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INTRODUCTION 

Breast cancer is the most common malignancy in Western women, affecting up to one in 10 
women during their lifetime and approximately 40,000 women dying from the disease each year in 
the U.S. Tumor genetic profiling through such methods as loss of heterozygosity (LOH) 
screening, comparative genomic hybridization (CGH), and cDNA microarrays all point to the same 
conclusion that a number of genetic changes are responsible for the malignant phenotype. For 
example, genes involved in breast cancer progression include amplification of oncogenes such as 
MYC, ERBB2, CCND1 and mutation of tumor suppressor genes TP53 and CHD1 [1]. In case of 
hereditary breast cancer, germline mutations of tumor suppressor genes PTEN on chromosome 
10q23.3, ATM on chromosome Ilq22-q23, BRCA1 on chromosome 17q21, and BRCA2 on 
chromosome 13ql2.3 were also shown to involve in the tumor progression [2]. These data 
represent a significant advance in our understanding of molecular genetics of breast cancer. 
However, breast cancer is a heterogeneous disease that entails complex genetic alterations in which 
tumor suppressor genes, oncogenes, and modulator genes were mutated. Multistep genetic 
alterations transform normal mammary epithelial cells via the steps of hyperplasia, premalignant 
change, in situ carcinoma, invasion, and metastases. Genome-wide searching for the alterations 
and the elucidation of molecular events involved in these steps is the main focus for new strategies 
targeted at diagnosis, prevention and treatment. 

While many investigators have observed LOH in breast cancers on chromosomes lp, lq, 
3p, 6q, 7q, lip, 13q, 16q, 17p, 17q, and 18q at the high frequencies variable from 20-60%, 
chromosome 17 is one of the most frequent carriers of LOH [3-15]. On 17p, two distinct 
regions, 17pl3.1 (containingp53) and 17pl3.3, have shown LOH with frequencies ranging from 
30-60% and 60-70%, respectively [10;11;16-22]. On 17q, three regions of frequent LOH have 
been identified. 17q21 LOH [12;22-25] contains BRCA1 [26]. LOH at 17qll.l-ql2 was 
detected as frequently as 79% in sporadic breast cancer [27]. The third LOH is telomeric to 
BRCA1 [ll;!^}. These studies demonstrate that, in addition top53, BRCA1, BRCA2, and others, 
chromosome 17 and other chromosomes with the high frequent areas of LOH harbor 
unrecognized tumor suppressor genes involved in the control of the normal growth of mammary 
epithelial cells. 

Direct evidence supporting the existence of additional breast cancer suppressor genes 
comes from introduction of a «eo-tagged chromosome 17 into breast cancer cell lines by 
microcell-mediated chromosome transfer that demonstrated suppression of tumorigenicity [28- 
32]. Casey et al. was the first to provide biological evidence that in vitro growth of the breast 
cancer cell line MCF 7 (carrying wild-type p53) was suppressed by the introduction of a neo- 
tagged chromosome 17 [28]. A very similar result was independently reported by Negrini et al. 
[29]. In addition, anchorage-independent growth, cell growth rate on plastic plates, and 
tumorigenicity in athymic nude mice of the mammary carcinoma cell line R30 were suppressed 
by introduction of chromosome 17. Wild-type p53 was not involved in this suppression [30]. 
Furthermore, only the long arm of the transferred chromosome 17 was capable of suppressing 
the tumorigenicity of the;?53-mutant breast cancer cell line MDA-MD-231 [29]. Finally, Theile 
et al. demonstrated that suppression of tumorigenicity of the breast cancer cell line CAL51 by an 
introduced chromosome 17 did not require transfer ofp53 or BRCA1 [32]. Thus, additional 
tumor suppressor genes on chromosome 17 have yet to be identified. 



The insulin growth factor family was shown to play a role in breast cancer growth and 
progression. In fact, hyperinsulinemia, resulting from diet, aging, obesity and inadequate 
exercise, is a risk factor for breast cancer. It is also associated with the early stages of breast 
cancer [33] [34]. The insulin growth factor family is comprised of two ligands insulin-like 
growth factor I (IGF1) and insulin-like growth factor II (IGFII), three receptors (IGFIR, IGFIIR 
and insulin receptor) and seven binding proteins (IGFBP1-7). Both IGFI and IGFII activate 
estrogen receptor (ER)-dependent transcription in the presence of liganded ER. Conversely, 
estrogen regulates the expression of IGFs, IGFIR and IGFBPs [35] [36] [37]. In addition, IGFIR 
levels are a key modulator of cellular estrogen sensitivity [38]. Further elucidation of 
relationship between insulin-like growth factor superfamily and estrogen resposiveness involved 
in breast cancer growth should facilitate our understanding of the malignancy. 

To facilitate identification of tumor suppressor genes we have developed a novel strategy 
to reverse monochromosome-mediated tumor suppression by retroviral insertional mutagenesis 
and/or functional inactivation mediated by expressed cDNA fragments [39]. Insertional 
mutagenesis disrupts tumor suppressor genes (e.g., APC for familial adenomatous polyposis [40] 
andp53 in osteosarcoma [41]) and has been used as a powerful tool to identify various genes 
including Fli-l,p53, erb-B, and myc [42-44], vin-llcyclin D2 [45], Tiam-1 [46], bcar-1 [47], and 
CRL-1 [48]. Furthermore, it is known that retroviral insertion could activate proto-oncogene. 
Using retroviral insertional mutagenesis, we have developed a novel strategy for identification of 
genetic loci and tumor suppressor genes [39]. 

"Suppression and reversion of suppression" are the two basic aspects of this novel 
strategy. "Suppression" refers to the suppression of tumorigenic phenotypic features including 
anchorage-independent growth, focus formation in plastic culture, rapid cell population doubling 
time, and tumor formation in athymic nude mice by introduction of a «eo-tagged 
monochromosome into a cancer cell line via a microcell mediated chromosome transfer. 
"Reversion of suppression" means the reversion to the tumorigenic phenotype induced by 
insertional mutagenesis (proviral tagging) and/or functional inactivation of the suppressor 
gene(s) by antisense or dominant negative mutant proteins following the transduction of a 
retrovirus expression vector-carried cDNA library into the monochromosome suppressed cells. 

The hypothesis underlying this approach is the following. (1) The phenotypic reversion 
can derive from inactivation of tumor suppressor genes. The suppression related genetic locus or 
loci on the introduced chromosome provide targets to insertional mutagenesis. In addition, 
derived from cancer cell lines, the suppressed sublines may carry many mutated genetic loci that 
leave functional counterparts being "haploid" targets to insertional mutagenesis. Furthermore, 
the phenotypic reversion can come from activation of proto-oncogenes. (2) The successfully 
transduced tumorigenic cells can be positively selected in soft agar culture following co-selection 
for the drug-resistance genes on both the suppressive chromosome and the retroviral vector. (3) 
The genomic sequences tagged to the vectors and involved in the tumorigenic reversion can be 
readily isolated by PCR-based techniques. Based on this hypothesis we have successfully 
generated a serial retroviral-tagged revertant cell sublines using the chromosome-6 suppressed 
melanoma cell line UACC903(+6) [39]. 

We are applying the same strategy to identify unrecognized tumor suppressor gene(s) from 
a chromosome-17 suppressed breast cancer cell sublines. This study is using the tumorigenic cell 
line CAL51 and the chromosome-17 suppressed cell subline CAL/17 [32]. The parental CAL51 
cell line demonstrates insulin-independent growth, anchorage-independent growth, and rapid 
formation of subcutaneous tumors in athymic nude mice. All these readily detectable phenotypic 



features are suppressed in the chromosome 17 containing cell subline CAL/17 [32]. The central 
goal of this project is to identify breast cancer suppressor genes. The specific aims include (1) use 
of the chromosome-17 suppressed breast cancer cell sublines CAL/17 to generate the anchorage- 
independent revertants and (2) use of the anchorage-independent revertants to identify previously 
unrecognized suppressor genes. We previously reported the successful selection of the anchorage- 
independent cell sublines and the insulin-independent cell sublines. In this report, we describe (1) 
establishment of 5 stable anchorage-independent cell sublines and 10 stable insulin-independent 
cell sublines induced from the CAL/17 cell line by the retro viral insertional mutagenesis, (2) 
development of a polymerase chain reaction (PCR)-based method for rapid cloning of genomic 
sequences at the retroviral integration sites, (3) nucleotide sequence analysis, and (4) chromosomal 
localization of cloned genomic sequences. 



(6)   BODY 

Below are the timetable and the technique objectives from our original proposal. The 
current status of the technique objectives is indicated in the parentheses. The detailed description 
follows the Statement of Work. 

Table 1. The Timetable for the Proposed Experiments 
 Specific Aim 1  Specific Aim 2  

Year 01 

Completion of the library construction 

Completion of the retrovirus package 

Completion of the retrovirus transduction 

Year 02 

Completion of soft agar selection for colony forming cells and establishment of revertant sublines 

Study of in vitro growth and tumorigenicity test 

Identification of the effective cDNAs 

Year 03 

Mapping of identified cDNAs to chromosome regions 

Characterization of the full length cDNAs 

Technique Objectives 

Task 1: Months 1-2: Cell culture of the CAL51 and CAL/17-1 cells. Isolation of poly(A)+RNA 
from the chromosome-17 suppressed cell line CAL/17-1 for construction of a cDNA library. 
Isolation of DNA and total RNA from the two cell sublines for the future Southern and Northern 
analysis (Completed). 

Task 2: Months 2-3: Transfection of pLM2 plasmid vector into CAL51 and CAL/17-1 cells to 
determine the killing curves in the presence of L-histidinol dihydrochloride (Completed). 

Task 3: Months 3-4: Soft agar culture of the L-histidinol-resistant CAL51 and CAL/17-1 sublines 
(transfected with pLM2 vector) to generate the first-hand data for soft agar selection experiments 
(Completed). 

Task 4: Months 3-5: Construction of a random primed normalized cDNA library onto pLM2 vectors 
using poly(A)+RNA isolated from CAL/17-1 cells (Modified and completed). 
Task 5: Months 6-8: Package of the ecotropic and amphotropic retrovirus particles from the pLM2- 
carried cDNA library and determination of a titer of the retrovirus particles. (Completed). 



Task 6: Months 9-11: Transduction of the retrovirus particles into the CAL/17-1 cells and selection 
for colony forming cells using soft agar culture. (Completed). 

Task 7: Months 11-14: Individual colonies will be lifted from soft agar culture. Cells from the 
individual colonies will be expanded on plastic culture and re-plated in soft agar culture to eliminate 
false positives and to establish true revertant sublines (Completed). 

Task 8: Months 14-16: Study of in vitro growth of anchorage-independent revertant cell sublines to 
select candidates for test of tumorigenicity in athymic nude mice (Completed). 

5 stable anchorage-independent revertant cell sublines were generated. 
In addition, 10 stable insulin-independent revertant cell sublines were also 
generated. Manuscripts for reversion and selection of anchorage-independent 
cell sublines and insulin-independent cell sublines are in preparation. 

Task 9: Months 17-20: Tumorigenicity tests of the candidate sublines in athymic nude mice to 
identify the tumorigenic sublines (In progress). 

Task 10: Months 19-23: Identification of cDNA inserts on the integrated retroviral vectors. Test of 
effects of identified cDNAs on tumorigenic reversion of the CAL/17-1 cell line. (Was modified). 

Task 11: Months 21-24: Cloning of genomic sequences flanking the integrated retrovirus vectors 
(Completed) and subsequent identification of their encoded or adjacent cDNAs (In progress). 

A PCR-based method for rapid cloning genomic sequences at the 
retroviral integration sites was developed, and a manuscript is in preparation. 

Task 12: Months 25-27: Localization of identified cDNAs and flanking sequences onto 
chromosome regions (Completed in part). 

Task 13: Months 28-36: Molecular characterization of newly identified breast cancer suppressor 
gene(s) (To be done). 

MATERIALS. METHODS, AND PROCEDURES 

Cell Culture. The parental breast cancer cell line CAL51 and the chromosome-17 
suppressed cell sublines CAL/17 [32] were cultured in Dulbecco's modified Eagle's medium 
(DMEM) supplemented with 10% fetal bovine serum, 100 units/mL penicillin G sodium, and 
100 ug/mL streptomycin sulfate. Six hundred ug/mL of G418 and 10 ug/mL insulin were added 
in culture of the chromosome 17-containing cells. The insulin-independent revertant cell 
sublines are cultured in the absence of the insulin. Bosc23 cells [49] and Bing [50] cells were 
cultured in DMEM supplemented with 10% fetal bovine serum, 100 units/mL penicillin G 
sodium, and 100 ug/mL streptomycin sulfate. Ten% of newborn calf serum was used for culture 
of GP+envAM12 cells [51]. Eight mM of L-histidinol dihydrochloride (hisDK) was used for 
cells containing retrovirus vectors. All media, serum, and antibiotics were from Gibco BRL with 
exceptions where indicated. 

Escherichia coli strain DH5a cells (GIBCO, BRL) containing plasmid pLM2 [39] and 
strain Supercompetent cells (Catalogue no. 230140; Stratagene) containing a cDNA library were 
cultured in Luria-Bertani medium with 100 ug of ampicillin per ml. E. coli DH5a (GIBCO, 



BRL) carrying pAMPIO plasmid and its derivatives were cultured in Luria-Bertani (LB) medium 
with 100 ug/ml ampicillin. LB agar medium with 100 ug/ml ampicillin, 40 ug of isopropyl-ß- 
thiogalactopyranoside (IPTG) and 40 \xg of 5-bromo-4-chloro-3-indolyl- ß-D-galactoside (X-gal) 
per ml (both from Sigma) was used to detect insertion into pAMPIO. 

Techniques of the Molecular Cloning. Genomic DNA were isolated by standard 
methods [52]. Poly(A)+-RNA was extracted by use of the FastTrack 2.0 mRNA Isolation Kit 
according to manufacturer's instructions (Catalog nos. K1593-02, K1593-03; Invitrogen). The 
cDNA library was synthesized from poly(A)+ RNA using Universal RiboClone cDNA Synthesis 
System (Catalog no. C4360; Promega) according to the manufacturer's instruction. Briefly, first 
strand synthesis was driven by Avian Myeloblstosis Virus (AMV) reverse transcriptase and 
random hexameric primers, followed directly by second strand replacement synthesis using 
Rnase H and DNA polymerase I. After treatment with T4 DNA polymerase to flush the ends, 
the double-stranded cDNA molecules were prepared for cloning by size fractionation and the 
additino of EcoKL adaptors. The resulting cDNA samples were cloned into pLM2 plasmid 
vectors. To generate high transformation efficiency, the double stranded cDNA were 
phosphorylated and pLM2 vectors were dephosphorylated before ligation. Plasmid DNA was 
isolated using alkaline lysis methods [53] or using QIAGEN Plasmid Purification Kit (catalogue 
No. 12262) according to the manufacturer's instruction. 

Packaging of Retrovirus Particles. Virus particles containing retroviral vectors were 
packaged from pLM2 plasmids, using the retrovirus-packaging cell lines Bosc-23 (ecotropic) and 
GP+envAM12 (amphotropic) and BING (amphotropic) by methods essentially as described [51] 
[49;50]. Briefly, 50 ug of plasmid DNA or pLM2-carried cDNA library were used to transfect 
approximately 107 Bosc-23 or BING cells using Cell-Porator Electroporation System I 
(catalogue No. 71600-019; GIBCO BRL) according to the manufacturer's instruction. To 
determine the transfection efficiency, 50-ug plasmid vectors with a green fluorescence gene was 
transfected into the same cells under the same conditions. 10 ml of supernatant from transfected 
Bosc-23 cells were also used to transduce aliquots of 1 x 106 GP+envAM12 cells in the presence 
of 6 ug Polybrene per ml for production of the amphotropic virus particles. The pLM2-virus 
vector-containing cells are selected for with with L-histidinol. The amphotropic virus particles 
from packaged from the Bing cells were used to transduce the breast cancer cell lines. 

Transduction. 15 T75-flasks of the chromosome 17-mediated suppressed cells 
(CAL/17-1) were cultured up to 50% confluence (approximately 107 cells/flask) and transduced 
with amphotropic virus particles in the transduction medium. The aliquots of 10 ml transduction 
medium consist of 5 ml culture medium and 5 ml supernatant from the transduced BING cells. 
4-ug polybrene were added in each ml medium to enhance the attachment of the virus particles to 
the cell surface. The fresh transduction medium was used to replace the old one every 4 hours 
per day for three days. The transduced cells were selected for with both G418 and HisD for 10 
days. 

Soft agar selection. Approximately 3 x 106 transduced cells were cultured in 0.33% soft 
agarose based on 0.9% bottom agarose in the concentration of 50,000 per 60-mm dish. After 4- 
week culture, all the cells from the top agarose were combined for the second round of the soft 
agar selection to enrich the true positive anchorage-independent cells. After the second round 



selection, 2 clones of colony forming cells were lifted from each 35-mm dish and a total of 96 
clones were selected for establishment of permanent anchorage-independent revertant cell 
sublines. 

Selection for insulin-independent cell sublines. Approximately 5 x 106 transduced 
cells were cultured in the medium without insulin for two months to select for insulin- 
independent cell sublines. The CAL51 and CAL/17 cells were used as the positive and negative 
controls, respectively. 48 clones were selected for establishment of permanent insulin- 
independent revertant cell sublines. 

Southern Blot Hybridization. Genomic DNA (20 ug) was digested with restriction 
enzymes Hindlll (Catalogue No. 104CS, New England BioLabs Inc.) and EcoW (Catalogue No. 
101CS, New England BioLabs Inc.).   The digested DNA were size-fractionated on 0.8% agarose 
gel. The DNA in the gel were denatured and neutralized, and then blotted to Hybond-N* nylon 
membrane (Catalogue No. RPN. 303N Amersham Pharmacia Biotech) by capillary transfer. The 
DNA in the membrane was UV cross-linked (UV Strantalinker 1800, Stratagene, La Jolla, CA). 
A HisD DNA probe was prepared by 5amHI-digestion and purified from a gel using the 
GENECLEANII Kit (Bio 101, Inc.) and labeled with [a32p]-dCTP using the Random Primed 
DNA Labeling Kit (Boehringer Mannheim). The membrane was prehybridized at 65° C for 3 
hours in a prehybridization solution (5xDenhardt's, 5xSSPE, 0.5% SDS) and then hybridized 
with the [a32p]-dCTP labeled HisD probe in the same solution at 65° C overnight. Washes were 
performed in lxSSPE/0.1% SDS at room temperature for 10 min and twice with 
0.1xSSPE/0.1%SDS at 42° C for 15 min. The membranes were exposed to autoradiogram films 
(Catalogue No. Labscientific Inc., Livington N.J. 07039) at -80° C in the presence of intensifying 
screens for 5-7 days. 

Cloning of Genomic Sequence at Retrovirus integration site. Single-stranded DNA 
was amplified by the vector specific primer (SN158, 5'- 
TCGGTGGTCCCTGGGCAGGGGTCTCCAAAT-3*) from the 5'-end of the retrovirus vector. 
PCR was performed in 50 jal reaction mixtures made up of 0.5 ug of template genomic DNA, 0.2 
(iM of oligonucleotide primer, 100 \M of each deoxynucleotide triphosphate, 1.5 mM MgCl2, 
lxPCR buffer, and 5 units Taq polymerase. The reaction was heated to 94° C for 5 min, and 35 
cycles of 94° C for 1 min, 56° C for 2 min and 72° C for 1 min, followed by final extension for 
10 min at 72° C. The PCR products were purified with Micro Bio-Spin 30 chromatography 
columns (Catalogue No. 732-6223, BIO-RAD) as recommended by the manufacturer. 

The tailing reaction contained 15 |aL (0.5 ug) of the purified ampliation PCR products, 
100 nM of deoxynucleotide triphosphate (Catalogue No. 27-2035-01; Amersham Pharmacia 
Biotech), 20 U of terminal deoxynucleotidyl transferase (Catalogue No. 252S, New England 
BioLabs Inc.), 1 x reaction buffer for terminal transferase containing 50 mM potassium acetate, 
20 mM Tris acetate, 10 mM magnesium acetate, 1 mM DTT and 0.25 mM CoCl2 in a final 
volume of 50 ^L. The reaction mixture was incubated at 37° C for 1 hour and then heat to 70° C 
for 10 minutes to inactivate the enzyme. 

The poly(dA)-tailed PCR products were used as templates for secondary amplification by 
PCR with nested primers. The 50 \x\ reaction contained 0.2 \M nested vector-specific primer 
(SN121: 5'-TTGTTCCTGACCTTGATCTGAACT-3'), 0.2 jiM poly(dT)-primer (5'- 
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CGGAGGTTTTTTTTTTTTTTTTT-3'), and 2 nL of the poly(dA)-tailed fragments. The other 
components were the same as those for the single-stranded PCR. The reaction comprised one 
cycle at 94° for 5 min, and 25 cycles of denaturation for 1 min at 94° C, annealing for 2 min at 
48° C and extension for 1 min at 72° C followed by final extension for 10 min at 72° C. The 
third PCR was performed with 0.2 \M primers SN127 (5'- 
CUACUACUACUATCCATGCCTTGCAAAGTGGCGTTA-3') and SN81 (5*- 
CUACUACUACUACGGAGGTTTTTTTTTTTTTTTTTT-3']. Both primers contained (CUA)4 

sequence at the 5'-end for cloning of the PCR products to the UDG-cloning vector pAMPIO 
[54]. The PCR reaction was the same as the secondary PCR reaction with the exception of the 
annealing temperature of 50° C. The PCR products were purified using Micro Bio-Spin 30 
chromatography columns. 

50 ng of PCR products were annealed with 25 ng of pAMPIO plasmid vectors (Catalogue 
No. 18552-018, Life Technologies Inc.) as recommended by the supplier. The recombinant 
plasmids were transformed into competent E. coli DH5a cells for screening white colonies that 
contain DNA inserts. All the white colonies were picked up and transferred onto two duplication 
plates. After overnight culture at 37° C, the colonies were transferred to Hybond-N4" nylon 
membranes (Catalogue No. RPN. 82C Amersham Pharmacia Biotech) for colony hybridization 
under the same conditions as Southern hybridization with the [y32p]dATP-labeled vector-specific 
probe SN212 (5'-AAGCTAGCTTGCCACCTACGGGTGGGGTCTTTCAAA-3'). Washes 
were performed in lxSSPE/0.1% SDS at room temperature for 10 min and twice with 
0.1xSSPE/0.1%SDS at 42 C for 15 min. The positive bacterial colonies were picked up for cell 
expansion. The plasmid DNA was isolated from dozens of colonies by utilization of a mini 
preparation kit (Catalogue No. 2072-400, Bio 101 Inc.) for nucleotide sequence analysis. 

DNA sequence analysis. The insert sequences in the plasmid vectors pAMPIO were 
determined by use of a Perkin Elmer Applied Biosystem (PE-ABI) automated 377 DNA 
sequencer. The dye terminator (4 fluorescent dyes) labeling method and AppliTaq FS DNA 
polymerase were used for the DNA sequencing reaction. The sequencing reaction and gel 
electrophoresis were conducted following the manufacturer's instructions (PE-ABI). Multiple 
sequence alignments and consensus determinations were performed with DNASTAR software 
version 1.58 (DNASTAR Inc., Madison, WI). The sequence database GeneBank was searched 
by use of the BLASTN and BLASTX programs [55;56;56]. 

11 



(7)   KEY RESEARCH ACCOMPLISHMENT 

This research has generated the following key research accomplishment. 

a. 96 anchorage-independent revertant cell sublines were induced by retroviral 
insertional mutagenesis. 5 stable and unique anchorage-independent revertant cell 
sublines have been established. 

b. 48 insulin-independent revertant cell sublines were induced by retroviral insertional 
mutagenesis. 10 stable and unique insulin-independent revertant cell sublines have 
been established. 

c. A method for rapid cloning genomic sequences at the retroviral integration sites has 
been successfully developed. Using this method, we have cloned the genomic 
sequences at the retroviral insertion sites in all of the 5 anchorage-independent cell 
sublines and the 10 insulin-independent cell sublines. 

d. 31 plasmid DNA were isolated from cloning of genomic sequences at the retroviral 
insertion sites in anchorage-independent cell sublines. 50 plasmid DNA were isolated 
from cloning of genomic sequences at the retroviral insertion sites in insulin- 
independent cell sublines. On average, 500 base pair (bp) sequences were cloned 
from each revertant cell subline. 

e. Out of the 5 unique revertant anchorage-independent cell sublines, 2 integrated 
retroviral vectors were localized at chromosome 7ql l-q21 and 15q26.1 band regions. 
The retroviral vectors in 3 revertant cell subline have yet to be mapped. 

f. Out of the 10 unique revertant insulin-independent cell sublines, 3 integrated 
retroviral vectors were localized onto human chromosomes, one on chromosome 
7ql l-q21, one on chromosome 14, and one on chromosome 22. The retroviral 
vectors in 7 revertant cell subline have yet to be mapped. 

12 



(8)   REPQRTABLE OUTCOMES 

The following manuscripts are in preparation for publication. 

a. Title: "Reversion of the chromosome 17-mediated suppressed breast cancer cell line 
CAL/17 to anchorage-independent growth by retroviral insertional mutagenesis"; 

b. Title: "Reversion of the chromosome 17-mediated suppressed breast cancer cell line 
CAL/17 to insulin-independent growth by retroviral insertional mutagenesis"; 

c. Title: "Rapid cloning of genomic sequence at a retroviral insertion site"; 

13 



(9)   CONCLUSIONS 

a. We have applied retroviral insertional mutagenesis to successfully revert the chromosome 
17-mediated suppressed breast cancer phenotypic features including anchorage- 
dependent growth and insulin-dependent growth. 

b. The resulting 5 anchorage-independent revertant breast cancer cell sublines are unique 
and useful for identification of genomic loci and genes involved in breast cancer 
progression from anchorage-dependent growth to anchorage-independent growth. 

c. The resulting 10 insulin-independent revertant breast cancer cell sublines are also unique 
and provides innovative cellular resource for identification of genomic loci and genes 
involved in the insulin-dependent and insulin-independent growth. 

d. The PCR-based method for rapid cloning of genomic sequence at a retroviral insertion 
site should be useful to clone any unknown nucleotide sequence adjacent to a known 
sequence. 

e. The genomic loci identified at human chromosome 7ql l-q21, 14, 15q26.1, and 22 should 
facilitate the identification of genes involved in the reversion of the suppressed phenotype 
to anchorage-independent growth or insulin-independent growth. 

f. The determination of 10 other retroviral insertion sites in the 3 anchorage-independent 
revertant cell subline and 7 insulin-independent revertant cell lines are in progress. 
Completion of these mapping should result in the identification of more genomic loci and 
genes involved in the breast cancer progression. 

g. The fact of our successful creation of the anchorage-independent and the insulin- 
independent cell sublines strongly suggest that the retroviral insertional mutagenesis can 
be applied to many areas of cancer research. For example, we can select for the 
hormone-independent cell sublines from a hormone-independent cell line in culture, and 
the tumorigenic cell sublines from a non-tumorigenic cell line and the metastatic cancer 
cell sublines from a non-metastatic cell line in animal models. 
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